MiR-148a increases glioma cell migration and invasion by downregulating GADD45A in human gliomas with IDH1 R132H mutations
نویسندگان
چکیده
High-grade gliomas are severe tumors with poor prognosis. An R132H mutation in the isocitrate dehydrogenase (IDH1) gene prolongs the life of glioma patients. In this study, we investigated which genes are differentially regulated in IDH1 wild type (IDH1WT) or IDH1 R132H mutation (IDH1R132H) glioblastoma cells. Growth arrest and DNA-damage-inducible protein (GADD45A) was downregulated and microRNA 148a (miR-148a) was upregulated in in IDH1R132H human glioblastomas tissues. The relationship between GADD45A and miR-148a is unknown. In vitro experiments showed that GADD45A negatively regulates IDH1R132H glioma cell proliferation, migration, and invasion, and neurosphere formation in IDH1R132H glioblastoma stem cells (GSC). In addition, a human orthotopic xenograft mouse model showed that GADD45A reduced tumorigenesis in vivo. Our findings demonstrated that miR-148a promotes glioma cell invasion and tumorigenesis by downregulating GADD45A. Our findings provide novel insights into how GADD45A is downregulated by miR-148a in IDH1R132H glioma and may help to identify therapeutic targets for the effective treatment of high-grade glioma.
منابع مشابه
D-2-Hydroxyglutarate producing neo-enzymatic activity inversely correlates with frequency of the type of isocitrate dehydrogenase 1 mutations found in glioma
BACKGROUND IDH mutations frequently occur in diffuse gliomas and result in a neo-enzymatic activity that results in reduction of α-ketoglutarate to D-2-hydroxyglutarate. In gliomas, the frequency of IDH1 mutations in codon 132 increases in the order R132L-R132S-R132G-R132C-R132H with R132H constituting more than 90% of all IDH1 mutations. RESULTS We determined the levels of D-2-hydroxyglutara...
متن کاملIDH1 R132H Mutation Enhances Cell Migration by Activating AKT-mTOR Signaling Pathway, but Sensitizes Cells to 5-FU Treatment as NADPH and GSH Are Reduced
AIM OF STUDY Mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene were recently discovered in vast majority of World Health Organization (WHO) grade II/III gliomas. This study is to understand the effects of IDH1 R132H mutation in gliomagenesis and to develop new strategies to treat glioma with IDH1 R132H mutation. MATERIALS AND METHODS Over expression of IDH1 R132H in U87MG cel...
متن کاملOverexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation.
Mutations in isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) are found in a subset of gliomas. Among the many phenotypic differences between mutant and wild-type IDH1/2 gliomas, the most salient is that IDH1/2 mutant glioma patients demonstrate markedly improved survival compared with IDH1/2 wild-type glioma patients. To address the mechanism underlying the superior clinical outcome of IDH1/2 mut...
متن کاملComparative study of IDH1 mutations in gliomas by high resolution melting analysis, immunohistochemistry and direct DNA sequencing.
Patients with glioblastomas with a specific mutation in the isocitrate dehydrogenase 1 (IDH1) gene have a better prognosis than those with gliomas with wild‑type IDH1. IDH1 analysis has become part of the standard diagnostic procedure and a promising tool used for stratification in clinical trials. The present study aimed to compare high resolution melting (HRM) analysis, immunohistochemistry (...
متن کاملIDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma.
Many patients with glioma harbor specific mutations in the isocitrate dehydrogenase gene IDH1 that associate with a relatively better prognosis. IDH1-mutated tumors produce the oncometabolite 2-hydroxyglutarate. Because IDH1 also regulates several pathways leading to lipid synthesis, we hypothesized that IDH1-mutant tumors have an altered phospholipid metabolite profile that would impinge on tu...
متن کامل